Intuitionistic Weak Arithmetic

Morteza Moniri

Institute for Studies in Theoretical Physics and Mathematics (IPM),

P.O. Box 19395-5746, Tehran, Iran

email: ezmoniri@ipm.ir

Abstract

We construct ω -framed Kripke models of $i \forall_1$ and $i \Pi_1$ non of whose worlds satisfies $\forall x \exists y (x = 2y \lor x = 2y + 1)$ and $\forall x, y \exists z Exp(x, y, z)$ respectively. This will enable us to show that $i \forall_1$ does not prove $\neg \neg \forall x \exists y (x = 2y \lor x = 2y + 1)$ and $i \Pi_1$ does not prove $\neg \neg \forall x, y \exists z Exp(x, y, z)$. Therefore, $i \forall_1 \nvDash \neg \neg lop$ and $i \Pi_1 \nvDash \neg \neg i \Sigma_1$. We also prove that $HA \nvDash l\Sigma_1$ and present some remarks about $i \Pi_2$.

2000 Mathematics Subject Classification: 03F30, 03F55, 03H15.

Key words and phrases: Fragments of Heyting Arithmetic, Kripke Models, exp.

0. Preliminaries

Following [W1], [AM], [MM], [M1] and [M2] this paper continues the study of some weak fragments of Heyting arithmetic and Kripke models of them.

We fix the language $L = \{+, \cdot, <, 0, 1\}$ of arithmetic throughout the paper.

By open formulas we mean quantifier-free formulas. $(\exists x \leq t)\varphi$ is an abbreviation for $\exists x(x \leq t \land \varphi)$ and $(\forall x \leq t)\varphi$ is an abbreviation for $\forall x(x \leq t \rightarrow \varphi)$, where t is a term not involving x. A formula is bounded if all quantifiers occurring in it are bounded, i.e., occur in a context as above. Σ_0, Π_0 or Δ_0 -formulas are bounded formulas. For $n \geq 0, \Sigma_{n+1}$ -formulas have the form $(\exists \overline{x})\varphi$ where φ in Π_n, Π_{n+1} -formulas have the form $(\forall \overline{x})\varphi$ where φ in Σ_n .

The hierarchy of \forall_n -formulas and of \exists_n -formulas are defined similarly by changing bounded formulas to open formulas.

Heything arithmetic HA and its fragments $(PA^{-})^{i}$, iop(=iopen), lop(=lopen) and $i\Delta_{0}$ are the intuitionistic counterparts of first order Peano Arithmetic PA and its fragments PA^{-} , Iop(=Iopen), Lop(=Lopen) and $I\Delta_{0}$. More generally for any set Γ of formulas we will use notations such as $i\Gamma$ and $l\Gamma$ in the same manner.

We use the usual terminology about Kripke structures as in [TD]. A formula $\varphi(\overline{x})$ is decidable in a Kripke model \mathcal{K} whenever $\mathcal{K} \Vdash \forall \overline{x}(\varphi(\overline{x}) \lor \neg \varphi(\overline{x}))$.

For a set T of sentences, T^i and T^c denote its intuitionistical and classical deductive closures.

Let $\neg \neg iop$ denote the intuitionistic theory axiomatized by $(PA^-)^i + \{\neg \neg I_x \varphi : \varphi \text{ is open}\}$. The theories $\neg \neg i \forall_1$ and $\neg \neg lop$ are defined similarly, by either replacing the class of open formulas by \forall_1 -formulas or the induction scheme by LNP. Also, $\neg \neg i \Pi_1$ will stand for the intuitionistic theory axiomatized by $i\Delta_0 + \{\neg \neg I_x \varphi : \varphi \in \Pi_1\}$.

Below we give three facts which we will use throughout the paper. The proofs are straightforward.

Fact 1 A \forall_1 (resp. Π_1)-formula is forced at a node α of a Kripke model of $(PA^-)^i$ (resp. $i\Delta_0$) if and only if it is satisfied in (the world attached to) α and any node above α if and only if it is satisfied in the union of the worlds in any (complete) path above α .

Fact 2 Suppose that $\mathcal{K} \Vdash (PA^-)^i$ (resp. $\mathcal{K} \Vdash i\Delta_0$) and $\varphi \in \exists_1$ (resp. $\varphi \in \Sigma_1$). Then for each $\alpha \in K$, we have:

$$\alpha \Vdash \varphi \Leftrightarrow M_{\alpha} \vDash \varphi.$$

If $\psi \in \forall_2$ (resp. $\psi \in \Pi_2$) then:

$$\alpha \Vdash \psi \Leftrightarrow \forall \beta \ge \alpha \ M_{\beta} \vDash \psi.$$

Fact 3 For a linear Kripke model deciding atomic (resp. bounded)-formulas to force $i \forall_1$ (resp. $i \Pi_1$), it is necessary and sufficient that the union of the worlds in any (complete) path in it satisfies $I \forall_1$ (resp. $I \Pi_1$).

Proof It was proved in [M2], using induction on formulas, that if α is a node in a linear Kripke model deciding atomic formulas and φ is an \exists -free formula, then $\alpha \Vdash \varphi$ if and only if the union of the worlds above α satisfies φ . Using this the proof is straightforward.

1. Constructing Kripke models of $i \forall_1 + \neg AEO$ and $i \prod_1 + \neg exp$

In this section we prove two independence results for $i \forall_1$ and $i \prod_1$.

Let AEO be the sentence $\forall x \exists y (x = 2y \lor x = 2y + 1)$. It was proved in [MM, 3.1] that, *iop* does not prove $\neg \neg AEO$. Here, using the same method, we show that even $i \forall_1$ does not prove $\neg \neg AEO$.

Proposition 1.1 There is an ω -framed Kripke model of $i \forall_1$ which forces $\neg AEO$.

Proof: Method 1 We use a modified version of the proof of [MM, 3.1]. Indeed we prove that for any nonstandard model M of $I\forall_1$ including an element t infinitely many times divisible by 2, there is an ω -framed Kripke model of $i\forall_1$ with no worlds satisfying AEO such that the union of its worlds is a countable submodel of M satisfying $I\forall_1$.

Let $(\psi_n)_{n\in\omega}$ be an enumeration of all universal *L*-formulas with a distinguished free variable. Each universal formula $\varphi(x_1, \dots, x_k), k \geq 1$, occurs *k*-times in this enumeration.

Let $M \models I \forall_1$ and $t \in M$ has the above mentioned property. Put $M_0 = \mathbb{Z}[t]^{\geq 0}$ and let $\overline{p}_{0,0}, \overline{p}_{0,1}, \cdots$ be a list of all tuples of parameters from M_0 (an enumeration of $M_0^{<\omega}$).

Fix any $k \geq 0$. Assume that for each $i \leq k$ a subsemiring M_i of M together with an enumeration $(\overline{p}_{i,j})_{j\in\omega}$ of $M_i^{<\omega}$ is given. For each $0 \leq i, j, m \leq k$ with $i+j \leq k$, if $\overline{p}_{i,j}$ does not have the same arity as the non-distinguished free variables in ψ_m or if $M_i \models \neg \psi_m(0, \overline{p}_{i,j})$ or $M \models \forall x \psi_m(x, \overline{p}_{i,j})$, where x is the distinguished free variable in ψ_m , then let $s_{i,j,m} = 0$. Otherwise, let $s_{i,j,m}$ be the least element in M for which $M \models \neg \psi_m(s_{i,j,m}+1, \overline{p}_{i,j})$ (note that $I \forall_1 \vdash L \exists_1$). Suppose $\psi_m(s_{i,j,m}+1, \overline{p}_{i,j})$ is $\forall \overline{y} \varphi_m(s_{i,j,m}+1, \overline{p}_{i,j}, \overline{y})$, where φ_m is open. Let $\overline{t}_{i,j,m}$ be any tuple of elements of M such that $M \models$ $\neg \varphi_m(s_{i,j,m}+1, \overline{p}_{i,j}, \overline{t}_{i,j,m})$. Let $M_{k+1} = M_k[s_{i,j,m}, \overline{t}_{i,j,m} : 0 \leq i, j, m \leq k, i+j \leq k]^{\geq 0}$.

Consider the Kripke structure on frame ω with M_k attached to node k. We want to show that for any $m, 0 \Vdash I_x \psi_m(x, \overline{y})$. Fix $i \ge 0$ and let $\overline{p}_{i,j} \in M_i$, of the same arity as the number of non-distinguished free variables in ψ_m , be arbitrary. We need to show $i \Vdash I_x \psi_m(x, \overline{p}_{i,j})$. It is easy to see that $\neg \neg I_x \psi_m(x, \overline{p}_{i,j}) \vdash_i I_x \psi_m(x, \overline{p}_{i,j})$ and so it suffices to prove the following claim:

Claim We have $i + j + m + 1 \Vdash I_x \psi_m(x, \overline{p}_{i,j})$.

Proof of the Claim In constructing $M_{i+j+m+1}$ from M_{i+j+m} , the formula $\psi_m(x, \overline{p}_{i,j})$ receives attention. Using Fact 1, one can show that if $M_i \models \neg \psi_m(0, \overline{p}_{i,j})$ or $M \models \forall x \psi_m(x, \overline{p}_{i,j})$, then $i + j + m + 1 \Vdash I_x \psi_m(x, \overline{p}_{i,j})$. Otherwise, by construction and Fact 1 again, i + j + m + 1 does not force the second conjunct of the antecedent of $I_x \psi_m(x, \overline{p}_{i,j})$ and so forces $I_x \psi_m(x, \overline{p}_{i,j})$. This establishes the claim.

As any finitely generated ring is Noetherian, one can show that each of the worlds in the Kripke model is a model of $\neg AEO$. Let us prove this. Assume for the purpose of a contradiction that some world models AEO. Put $t_0 = t$ and $t_{l+1} = \frac{t_l}{2}$. The ascending chain of ideals $(t_0) \subseteq (t_1) \subseteq (t_2) \subseteq \cdots$ in the ring generated by that model must stop as, by Hilbert's basis theorem, every finitely generated ring is Noetherian. So, for some $n \in \mathbb{N}$ and some g in that world, 0 = (2g - 1)t. But this is impossible as $2g - 1 \neq 0$ and t is infinitely large. This contradiction shows that for some i, t_{i+1} does not exist, i.e., t_i is not divisible by 2. Since our world is supposed to be a model of AEO it would follow that t_i is odd, which is impossible because this world is a subring of M in which t_i is divisible by 2.

Now since the sentence AEO is \forall_2 , the Kripke model will force $\neg AEO$ (Fact 2) and we will be done with the proposition.

Method 2 Let $M = \{p_0, p_1, p_2, ...\}$ be a countable nonstandard model of $I \forall_1$ with $t = p_0 \in M$ as above. For each $i \geq 0$, put $M_i = \mathbb{Z}[p_0, \cdots, p_i]^{\geq 0}$. Let \mathcal{K} be the obvious ω -framed Kripke model. We have $\bigcup M_i = M \models I \forall_1$ and therefore by Fact 3, $\mathcal{K} \Vdash i \forall_1$.

Again, each node of \mathcal{K} is finitely generated and so $\mathcal{K} \Vdash \neg AEO. \Box$

An intuitionistic theory T^i is said to be closed under the rule Double Negation Shift DNS if whenever $T^i \vdash \forall \overline{x} \neg \neg \varphi$, then $T^i \vdash \neg \neg \forall \overline{x} \varphi$ for any formula φ .

Theorem 1.2 (i) The theory $i \forall_1$ is not closed under the rule $DNS(\exists_1)$ (the rule DNS restricted to \exists_1 -formulas).

(ii) $i \forall_1 \nvDash \neg \neg lop$.

Proof (i) By $Iop \vdash AEO$ and closure of iop under the negative translation we have $iop \vdash \forall x \neg \neg \exists y (x = 2y \lor x = 2y + 1)$, while the above proposition shows $i \forall_1 \nvDash \neg \neg AEO$.

(ii) By the proof of [AM, Th. 1.4], Kripke models of lop are exactly *Iop*-normal Kripke structures and so $lop \vdash AEO.\square$

Now we consider the theory $i\Pi_1$. Recall Wehmeier's result, $i\Pi_1 \nvDash exp$, where exp is the Π_2 sentence which says the exponentiation function is total. His proof is based on constructing a two-node Kripke model of $i\Pi_1$ such that its root is not a model of exp, see [W1, Lemma 10]. Here we prove a stronger independence result.

Proposition 1.3 There is an ω -framed Kripke model of $i\Pi_1$ which forces $\neg exp$.

Proof Let M be a countable nonstandard model of $I\Pi_1$. Suppose that a_0, a_1, a_2, \cdots is a cofinal sequence of the nonstandard elements of M such that $a_i^{a_i} < a_{i+1}$ for each $i \ge 0$. For each $a \in M$, $a^{\mathbb{N}}$ denotes the set $\{x \in M : x < a^n \text{ for some non negative integer } n\}$. Consider the Kripke Model $a_0^{\mathbb{N}} \subseteq a_1^{\mathbb{N}} \subseteq a_2^{\mathbb{N}} \subseteq \cdots$. By [K, P. 69], each node of this Kripke model is a Δ_o -elementary substructure of M (therefore models Π_1 -theory $I\Delta_0$) and non of them satisfies *exp*. Therefore, it forces the negation of $exp \in \Pi_2$. Also, since the union of the worlds in this Kripke model is equal to M by Fact 3, it forces $i\Pi_1.\Box$

Theorem 1.4 (i) The theory $i\Pi_1$ is not closed under the rule $DNS(\Sigma_1)$ (the rule DNS restricted to Σ_1 -formulas).

(ii) $i\Pi_1 \nvDash \neg \neg i\Sigma_1$.

Proof (i) The theory $i\Pi_1$ is closed under the negative translation and $I\Pi_1$ proves exp. Therefore $i\Pi_1 \vdash \forall x, y \neg \neg \exists z Exp(x, y, z)$ while the above proposition shows $i\Pi_1 \nvDash \neg \neg exp$.

(ii) By [W1, Fact 8], $I\Sigma_1$ is Π_2 -conservative over $i\Sigma_1$ and so $i\Sigma_1 \vdash exp.\Box$

For any theory T^i containing $i\Delta_0$, we denote the intuitionistic closure of $i\Delta_0 + \{\neg \neg \varphi : \varphi \in T^i\}$ by $\neg \neg T^i$.

Proposition 1.5 If T^i contains $i\Delta_0 + exp$, then $\neg \neg T^i \nvDash T^i$.

Proof Suppose $\neg \neg T^i \vdash T^i$. Then any two-node Kripke model consisting of a model $M \models T^c$ over a Δ_0 -elementary substructure of M will force T^i , and so Whehmeier's argument about the limitation of the Π_2 -consequences of $i\Pi_1$ works in this situation, contradiction.

2. Some remarks about $i\Pi_2$

What can we say about $i\Pi_2$? First, $I\Pi_2$ is Π_2 -conservative over $i\Pi_2$ [Bur, Coro. 2.6]. Also, by Proposition 1.5, $\neg \neg i\Pi_2 \nvDash i\Pi_2$. This shows that, unlike $i\Pi_1$, it is not true that satisfying $I\Pi_2$ in the union of each cofinal path of a Kripke model $\mathcal{K} \Vdash i\Delta_0$ implies $\mathcal{K} \Vdash i\Pi_2$. Therefore, we should not expect to construct Kripke models of the form Proposition 1.3 for $i\Pi_2$. However, the converse remains open:

Question 1 Is it true that the union of the worlds in any cofinal path of a Kripke model of $i\Pi_2$ satisfies $I\Pi_2$?

Wehmeier [W2, Th. 5.1] proved that any reversely well founded $I\Pi_2$ -normal Kripke structure forces $i\Pi_2$ (note that by [Bus, P. 72-73], there exists an ω -framed PA-normal Kripke structure which does not force even $i\Pi_1$). Also one can construct a non $I\Pi_2$ -normal Kripke model of $i\Pi_2$ by putting a model M of $I\Pi_2$ above a Σ_2 -elementary subsructure of M which is not a model of $I\Pi_2$. Furthermore, it is easy to see that any Σ_2 -elementary $I\Pi_2$ -normal Kripke structure forces $i\Pi_2$.

Question 2 Is there an ω -framed Kripke model of $i\Pi_2$ non of whose worlds satisfies $I\Pi_2$?

Here we prove a generalization of [W2, Th. 5.1].

Proposition 2.1 Any $I\Pi_2$ -normal Kripke model of $\neg \neg i\Pi_2$ (with a tree as its frame) forces $i\Pi_2$.

Proof Let \mathcal{K} be an $I\Pi_2$ -normal Kripke model of $\neg \neg i\Pi_2$ and $\alpha \in \mathcal{K}$. Suppose that $\varphi(x, \overline{y})$ is any Π_2 -formula. If $\alpha \not\Vdash I_x \varphi(x, \overline{y})$, then there exists a node $\beta \geq \alpha$ and $\overline{b} \in M_\beta$ such that $\beta \Vdash \varphi(0, \overline{b})$ and $\beta \Vdash \forall x(\varphi(x, \overline{b}) \to \varphi(x+1, \overline{b}))$, but $\beta \not\Vdash \forall x\varphi(x, \overline{b})$. By $\beta \Vdash \neg \neg i\Pi_2$ in each path above β , there exists a node which forces $I_x\varphi(x, \overline{b})$ and so does $\forall x\varphi(x, \overline{b})$. Now we can consider the nodes below these nodes and proceed by bar induction as the proof of [W2, Th. 5.1]. \Box

We end this section by providing a proof for a stronger version of the fact $HA \nvDash LNP$, see e.g. [TD, P. 130-131] or [D, P. 117].

Proposition 2.2 $HA \nvDash l\Sigma_1$.

Proof Let $\tau \in \Pi_1$ be a Godel sentence $(PA \nvDash \tau, \mathbb{N} \models \tau)$. Assume $\sigma \equiv_c \neg \tau \in \Sigma_1$ and let M be a classical model of $PA + \sigma$. Let \mathcal{K} be the two-node Kripke model obtained by putting M above \mathbb{N} (the result of applying Smorynski's prime operation ' to M [S]). Note that the least solution of the formula $x = 1 \lor \sigma$ in \mathbb{N} is 1 and in M is 0. Hence using fact 2, one can see that $\mathcal{K} \nvDash L_x(x = 1 \lor \sigma)$. \Box

Acknowlegements This research is supported by Institute for Studies in Theoretical

Physics and Mathematics (IPM), Tehran, Iran.

References

- [AM] M. Ardeshir and Mojtaba Moniri, Intuitionistic Open Induction and Open Least Number Principle and the Buss Operator, Notre Dame J. Formal Logic 39 (1998), 212-220.
- [Bur] W. Burr, Fragments of Heyting Arithmetic, J. Symbolic Logic 63 (2000), 1223-1240.
- [Bus] S. Buss, Intuitionistic Validity in T-normal Kripke Structures, Ann. Pure Appl. Logic 59 (1993), 159-173.
 - [D] A. G. Dragalin, Mathematical intuitionism. Introduction to proof theory. Translated from the Russian by Elliott Mendelson. Translation edited by Ben Silver. Translations of Mathematical Monographs, 67. American Mathematical Society, Providence, RI, 1988.
- [HP] P. Hajek and P. Pudlak, Metamathematics of First-order Arithmetic, Springer-Verlag, Berlin, 1993.
 - [K] R. Kaye, Models of Peano Arithmetic, Oxford University Press, Oxford, 1991.
- [MM] Morteza Moniri and Mojtaba Moniri, Some Weak Fragments of HA and Certain Closure Properties, J. Symbolic Logic 67 (2002) 91-103.
- [M1] Morteza Moniri, Weak Arithmetics and Kripke Models, Math. Logic Quart. 48 (2002) 157-160.
- [M2] Morteza Moniri, Independence Results for Weak systems of Intuitionistic Arithmetic, Math. Logic Quart., to appear.
 - [S] C. Smorynski, Applications of Kripke Models, in: Metamathematical Investigations of Intuitionistic Arithmetic and Analysis (A.S. Troelstra, ed.), Springer Lecture Notes in Mathematics, Vol. 344, Springer-Verlag, Berlin, 1973.
- [TD] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, Vol. I, North-Holland, Amsterdam, 1988.
- [W1] K.F. Wehmeier, Fragments of HA Based on Σ_1 -Induction, Arch. Math. Logic 37 (1997), 37-49.
- [W2] K.F. Wehmeier, Constructing Kripke Models of Certain Fragments of Heyting's Arithmetic. Publ. Inst. Math. (Beograd) (N.S.) 77 (1998), 1-8.