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Abstract

We construct ω-framed Kripke models of i∀1 and iΠ1 non of whose worlds satis-
fies ∀x∃y(x = 2y∨x = 2y+1) and ∀x, y∃zExp(x, y, z) respectively. This will enable
us to show that i∀1 does not prove ¬¬∀x∃y(x = 2y ∨ x = 2y + 1) and iΠ1 does not
prove ¬¬∀x, y∃zExp(x, y, z). Therefore, i∀1 0 ¬¬lop and iΠ1 0 ¬¬iΣ1. We also
prove that HA 0 lΣ1 and present some remarks about iΠ2.
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0. Preliminaries

Following [W1], [AM], [MM], [M1] and [M2] this paper continues the study of some
weak fragments of Heyting arithmetic and Kripke models of them.

We fix the language L = {+, ·, <, 0, 1} of arithmetic throughout the paper.

By open formulas we mean quantifier-free formulas. (∃x ≤ t)ϕ is an abbreviation for
∃x(x ≤ t∧ ϕ) and (∀x ≤ t)ϕ is an abbreviation for ∀x(x ≤ t→ ϕ), where t is a term not
involving x. A formula is bounded if all quantifiers occurring in it are bounded, i.e., occur
in a context as above. Σ0,Π0 or ∆0-formulas are bounded formulas. For n ≥ 0,Σn+1-
formulas have the form (∃x)ϕ where ϕ in Πn, Πn+1-formulas have the form (∀x)ϕ where
ϕ in Σn.

The hierarchy of ∀n-formulas and of ∃n-formulas are defined similarly by changing
bounded formulas to open formulas.

Heything arithmetic HA and its fragments (PA−)i, iop(= iopen), lop(= lopen) and
i∆0 are the intuitionistic counterparts of first order Peano Arithmetic PA and its frag-
ments PA−, Iop(= Iopen), Lop(= Lopen) and I∆0. More generally for any set Γ of
formulas we will use notations such as iΓ and lΓ in the same manner.
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We use the usual terminology about Kripke structures as in [TD]. A formula ϕ(x) is
decidable in a Kripke model K whenever K  ∀x(ϕ(x) ∨ ¬ϕ(x)).

For a set T of sentences, T i and T c denote its intuitionistical and classical deductive
closures.

Let ¬¬iop denote the intuitionistic theory axiomatized by (PA−)i+{¬¬Ixϕ : ϕ is open}.
The theories ¬¬i∀1 and ¬¬lop are defined similarly, by either replacing the class of open
formulas by ∀1-formulas or the induction scheme by LNP. Also, ¬¬iΠ1 will stand for the
intuitionistic theory axiomatized by i∆0 + {¬¬Ixϕ : ϕ ∈ Π1}.

Below we give three facts which we will use throughout the paper. The proofs are
straightforward.

Fact 1 A ∀1 (resp. Π1)-formula is forced at a node α of a Kripke model of (PA−)i

(resp. i∆0) if and only if it is satisfied in (the world attached to) α and any node above
α if and only if it is satisfied in the union of the worlds in any (complete) path above α.

Fact 2 Suppose that K  (PA−)i (resp. K  i∆0) and ϕ ∈ ∃1 (resp. ϕ ∈ Σ1). Then
for each α ∈ K, we have:

α  ϕ⇔Mα � ϕ.

If ψ ∈ ∀2 (resp. ψ ∈ Π2) then:

α  ψ ⇔ ∀β ≥ α Mβ � ψ.

Fact 3 For a linear Kripke model deciding atomic (resp. bounded)-formulas to force
i∀1 (resp. iΠ1), it is necessary and sufficient that the union of the worlds in any (complete)
path in it satisfies I∀1 (resp. IΠ1).

Proof It was proved in [M2], using induction on formulas, that if α is a node in a linear
Kripke model deciding atomic formulas and ϕ is an ∃-free formula, then α  ϕ if and only
if the union of the worlds above α satisfies ϕ. Using this the proof is straightforward.�

1. Constructing Kripke models of i∀1 + ¬AEO and iΠ1 + ¬exp

In this section we prove two independence results for i∀1 and iΠ1.

Let AEO be the sentence ∀x∃y(x = 2y ∨ x = 2y + 1). It was proved in [MM, 3.1]
that, iop does not prove ¬¬AEO. Here, using the same method, we show that even i∀1

does not prove ¬¬AEO.

Proposition 1.1 There is an ω-framed Kripke model of i∀1 which forces ¬AEO.

Proof: Method 1 We use a modified version of the proof of [MM, 3.1]. Indeed we
prove that for any nonstandard model M of I∀1 including an element t infinitely many
times divisible by 2, there is an ω-framed Kripke model of i∀1 with no worlds satisfying
AEO such that the union of its worlds is a countable submodel of M satisfying I∀1.
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Let (ψn)n∈ω be an enumeration of all universal L-formulas with a distinguished free
variable. Each universal formula ϕ(x1, · · · , xk), k ≥ 1, occurs k-times in this enumeration.

Let M � I∀1 and t ∈ M has the above mentioned property. Put M0 = Z[t]≥0 and let
p0,0, p0,1, · · · be a list of all tuples of parameters from M0 (an enumeration of M<ω

0 ).

Fix any k ≥ 0. Assume that for each i ≤ k a subsemiring Mi of M together with
an enumeration (pi,j)j∈ω of M<ω

i is given. For each 0 ≤ i, j,m ≤ k with i + j ≤ k,
if pi,j does not have the same arity as the non-distinguished free variables in ψm or
if Mi |= ¬ψm(0, pi,j) or M |= ∀xψm(x, pi,j), where x is the distinguished free variable
in ψm, then let si,j,m = 0. Otherwise, let si,j,m be the least element in M for which
M |= ¬ψm(si,j,m+1, pi,j) (note that I∀1 ` L∃1). Suppose ψm(si,j,m+1, pi,j) is ∀yϕm(si,j,m+
1, pi,j, y), where ϕm is open. Let ti,j,m be any tuple of elements of M such that M |=
¬ϕm(si,j,m + 1, pi,j, ti,j,m). Let Mk+1 = Mk[si,j,m, ti,j,m : 0 ≤ i, j,m ≤ k, i+ j ≤ k]≥0.

Consider the Kripke structure on frame ω with Mk attached to node k. We want to
show that for any m, 0  Ixψm(x, y). Fix i ≥ 0 and let pi,j ∈ Mi, of the same arity
as the number of non-distinguished free variables in ψm, be arbitrary. We need to show
i  Ixψm(x, pi,j). It is easy to see that ¬¬Ixψm(x, pi,j) `i Ixψm(x, pi,j) and so it suffices
to prove the following claim:

Claim We have i+ j +m+ 1  Ixψm(x, pi,j).

Proof of the Claim In constructing Mi+j+m+1 from Mi+j+m, the formula ψm(x, pi,j)
receives attention. Using Fact 1, one can show that if Mi |= ¬ψm(0, pi,j) or M |=
∀xψm(x, pi,j), then i + j +m + 1  Ixψm(x, pi,j). Otherwise, by construction and Fact 1
again, i+ j +m+ 1 does not force the second conjunct of the antecedent of Ixψm(x, pi,j)
and so forces Ixψm(x, pi,j). This establishes the claim.

As any finitely generated ring is Noetherian, one can show that each of the worlds in
the Kripke model is a model of ¬AEO. Let us prove this. Assume for the purpose of a
contradiction that some world models AEO. Put t0 = t and tl+1 = tl

2
. The ascending

chain of ideals (t0) ⊆ (t1) ⊆ (t2) ⊆ · · · in the ring generated by that model must stop
as, by Hilbert’s basis theorem, every finitely generated ring is Noetherian. So, for some
n ∈ N and some g in that world, 0 = (2g− 1)t. But this is impossible as 2g− 1 6= 0 and t
is infinitely large. This contradiction shows that for some i, ti+1 does not exist, i.e., ti is
not divisible by 2. Since our world is supposed to be a model of AEO it would follow that
ti is odd, which is impossible because this world is a subring of M in which ti is divisible
by 2.

Now since the sentence AEO is ∀2, the Kripke model will force ¬AEO (Fact 2) and
we will be done with the proposition.

Method 2 Let M = {p0, p1, p2, . . . } be a countable nonstandard model of I∀1 with
t = p0 ∈ M as above. For each i ≥ 0, put Mi = Z[p0, · · · , pi]

≥0. Let K be the obvious
ω-framed Kripke model. We have

⋃
Mi = M |= I∀1 and therefore by Fact 3, K  i∀1.
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Again, each node of K is finitely generated and so K  ¬AEO.�

An intuitionistic theory T i is said to be closed under the rule Double Negation Shift
DNS if whenever T i ` ∀x¬¬ϕ, then T i ` ¬¬∀xϕ for any formula ϕ.

Theorem 1.2 (i) The theory i∀1 is not closed under the rule DNS(∃1) (the rule DNS
restricted to ∃1-formulas).

(ii) i∀1 0 ¬¬lop.

Proof (i) By Iop ` AEO and closure of iop under the negative translation we have
iop ` ∀x¬¬∃y(x = 2y ∨ x = 2y + 1), while the above proposition shows i∀1 0 ¬¬AEO.

(ii) By the proof of [AM, Th. 1.4], Kripke models of lop are exactly Iop-normal Kripke
structures and so lop ` AEO.�

Now we consider the theory iΠ1. Recall Wehmeier’s result, iΠ1 0 exp, where exp is
the Π2 sentence which says the exponentiation function is total. His proof is based on
constructing a two-node Kripke model of iΠ1 such that its root is not a model of exp, see
[W1, Lemma 10]. Here we prove a stronger independence result.

Proposition 1.3 There is an ω-framed Kripke model of iΠ1 which forces ¬exp.

Proof Let M be a countable nonstandard model of IΠ1. Suppose that a0, a1, a2, · · ·
is a cofinal sequence of the nonstandard elements of M such that aai

i < ai+1 for each
i ≥ 0. For each a ∈M , aN denotes the set {x ∈M : x < an for some non negative integer
n}. Consider the Kripke Model a0

N ⊆ a1
N ⊆ a2

N ⊆ · · · . By [K, P. 69], each node of this
Kripke model is a ∆o-elementary substructure of M (therefore models Π1-theory I∆0)
and non of them satisfies exp. Therefore, it forces the negation of exp ∈ Π2. Also, since
the union of the worlds in this Kripke model is equal to M by Fact 3, it forces iΠ1.�

Theorem 1.4 (i) The theory iΠ1 is not closed under the rule DNS(Σ1) (the rule
DNS restricted to Σ1-formulas).

(ii) iΠ1 0 ¬¬iΣ1.

Proof (i)The theory iΠ1 is closed under the negative translation and IΠ1 proves exp.
Therefore iΠ1 ` ∀x, y¬¬∃zExp(x, y, z) while the above proposition shows iΠ1 0 ¬¬exp.

(ii) By [W1, Fact 8], IΣ1 is Π2-conservative over iΣ1 and so iΣ1 ` exp.�

For any theory T i containing i∆0, we denote the intuitionistic closure of i∆0 +{¬¬ϕ :
ϕ ∈ T i} by ¬¬T i.

Proposition 1.5 If T i contains i∆0 + exp, then ¬¬T i 0 T i.

Proof Suppose ¬¬T i ` T i. Then any two-node Kripke model consisting of a model
M � T c over a ∆0-elementary substructure of M will force T i, and so Whehmeier’s
argument about the limitation of the Π2-consequences of iΠ1 works in this situation,
contradiction.�
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2. Some remarks about iΠ2

What can we say about iΠ2? First, IΠ2 is Π2-conservative over iΠ2 [Bur, Coro.
2.6]. Also, by Proposition 1.5, ¬¬iΠ2 0 iΠ2. This shows that, unlike iΠ1, it is not
true that satisfying IΠ2 in the union of each cofinal path of a Kripke model K  i∆0

implies K  iΠ2. Therefore, we should not expect to construct Kripke models of the form
Proposition 1.3 for iΠ2. However, the converse remains open:

Question 1 Is it true that the union of the worlds in any cofinal path of a Kripke
model of iΠ2 satisfies IΠ2?

Wehmeier [W2, Th. 5.1] proved that any reversely well founded IΠ2-normal Kripke
structure forces iΠ2 (note that by [Bus, P. 72-73], there exists an ω-framed PA-normal
Kripke structure which does not force even iΠ1). Also one can construct a non IΠ2-normal
Kripke model of iΠ2 by putting a model M of IΠ2 above a Σ2-elementary subsructure of
M which is not a model of IΠ2. Furthermore, it is easy to see that any Σ2-elementary
IΠ2-normal Kripke structure forces iΠ2.

Question 2 Is there an ω-framed Kripke model of iΠ2 non of whose worlds satisfies
IΠ2?

Here we prove a generalization of [W2, Th. 5.1].

Proposition 2.1 Any IΠ2-normal Kripke model of ¬¬iΠ2 (with a tree as its frame)
forces iΠ2.

Proof Let K be an IΠ2-normal Kripke model of ¬¬iΠ2 and α ∈ K. Suppose that
ϕ(x, y) is any Π2-formula. If α 1 Ixϕ(x, y), then there exists a node β ≥ α and b ∈ Mβ

such that β  ϕ(0, b) and β  ∀x(ϕ(x, b) → ϕ(x+1, b)), but β 1 ∀xϕ(x, b). By β  ¬¬iΠ2

in each path above β, there exists a node which forces Ixϕ(x, b) and so does ∀xϕ(x, b).
Now we can consider the nodes below these nodes and proceed by bar induction as the
proof of [W2, Th. 5.1].�

We end this section by providing a proof for a stronger version of the fact HA 0 LNP ,
see e.g. [TD, P. 130-131] or [D, P. 117].

Proposition 2.2 HA 0 lΣ1.

Proof Let τ ∈ Π1 be a Godel sentence (PA 0 τ , N |= τ). Assume σ ≡c ¬τ ∈ Σ1 and
let M be a classical model of PA+ σ. Let K be the two-node Kripke model obtained by
putting M above N (the result of applying Smorynski’s prime operation ′ to M [S]). Note
that the least solution of the formula x = 1∨ σ in N is 1 and in M is 0. Hence using fact
2, one can see that K 1 Lx(x = 1 ∨ σ). �
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